Global error estimation with runge-kutta triples

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global error estimation with adaptive explicit Runge-Kutta methods

Users of locally-adaptive software for initial value ordinary differential equations are likely to be concerned with global errors. At the cost of extra computation, global error estimation is possible. Zadunaisky's method and 'solving for the error estimate' are two techniques that have been successfully incorporated into Runge-Kutta algorithms. The standard error analysis for these techniques...

متن کامل

On Error Estimation In General Linear Methods: Runge Kutta (Rk) And Almost Runge-Kutta (Ark) Methods

Abstract— General linear methods (GLM) apply to a large family of numerical methods for ordinary differential equations, with RungeKutta (RK) and Almost Runge-Kutta (ARK) methods as two out of a number of special cases. In this paper, we have investigated the efficacy of Richardson extrapolation (RE) technique as a means of obtaining viable and acceptable estimates of the local truncation error...

متن کامل

Global Error versus Tolerance for Explicit Runge-Kutta Methods

Initial value solvers typically input a problem specification and an error tolerance, and output an approximate solution. Faced with this situation many users assume, or hope for, a linear relationship between the global error and the tolerance. In this paper we examine the potential for such 'tolerance proportionality' in existing explicit Runge-Kutta algorithms. We take account of recent deve...

متن کامل

A Fourth Order Multirate Runge-Kutta Method with Error Control

To integrate large systems of ordinary differential equations (ODEs) with disparate timescales, we present a multirate method with error control that is based on embedded, explicit Runge-Kutta (RK) formulas. The order of accuracy of such methods depends on interpolating certain solution components with a polynomial of sufficiently high degree. By analyzing the method applied to a simple test eq...

متن کامل

A Priori Estimates for the Global Error Committed by Runge–Kutta Methods for a Nonlinear Oscillator

The Alekseev–Gröbner lemma is combined with the theory of modified equations to obtain an a priori estimate for the global error of numerical integrators. This estimate is correct up to a remainder term of order h, where h denotes the step size and p the order of the method. It is applied to a class of nonautonomous linear oscillatory equations, which includes the Airy equation, thereby improvi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computers & Mathematics with Applications

سال: 1989

ISSN: 0898-1221

DOI: 10.1016/0898-1221(89)90181-8